Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Biophys J ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698644

RESUMO

The emergence of phase separation phenomena among macromolecules has identified biomolecular condensates as fundamental cellular organizers. These condensates concentrate specific components and accelerate biochemical reactions without relying on membrane boundaries. While extensive studies have revealed a large variety of nuclear and cytosolic membraneless organelles, we are witnessing a surge in the exploration of protein condensates associated with the membranes of the secretory pathway, such as the endoplasmic reticulum (ER) and the Golgi apparatus. This Review focuses on protein condensates in the secretory pathway and discusses their impact on the organization and functions of this cellular process. Moreover, we explore the modes of condensate-membrane association and the biophysical and cellular consequences of protein condensate interactions with secretory pathway membranes.

2.
Ultrason Sonochem ; 105: 106867, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38581799

RESUMO

In this initial study, the impact of thermosonication as an alternative to the traditional fusion in Brazilian cheese spread (Requeijão Cremoso) manufacture was investigated. The effect of ultrasound (US) power was evaluated considering various aspects such as gross composition, microstructure, texture, rheology, color, fatty acid composition, and volatile compounds. A 13 mm US probe operating at 20 kHz was used. The experiment involved different US power levels (200, 400, and 600 W) at 85 °C for 1 min, and results were compared to the conventional process in the same conditions (85 °C for 1 min, control treatment). The texture became softer as ultrasound power increased from 200 to 600 W, which was attributed to structural changes within the protein and lipid matrix. The color of the cheese spread also underwent noticeable changes for all US treatments, and treatment at 600 W resulted in increased lightness but reduced color intensity. Moreover, the fatty acid composition of the cheese spread showed variations with different US power, with samples treated at 600 W showing lower concentrations of saturated and unsaturated fatty acids, as well as lower atherogenicity and thrombogenicity indexes, indicating a potentially healthier product. Volatile compounds were also influenced by US, with less compounds being identified at higher powers, especially at 600 W. This could indicate possible degradation, which should be evaluated in further studies regarding US treatment effects on consumer perception. Hence, this initial work demonstrated that thermosonication might be interesting in the manufacture of Brazilian cheese spread, since it can be used to manipulate the texture, color and aroma of the product in order to improve its quality parameters.


Assuntos
Queijo , Queijo/análise , Sonicação/métodos , Brasil , Manipulação de Alimentos/métodos , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/análise , Ácidos Graxos/química , Cor , Temperatura
3.
Nat Commun ; 15(1): 3302, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658535

RESUMO

Uncontrolled secretion of ECM proteins, such as collagen, can lead to excessive scarring and fibrosis and compromise tissue function. Despite the widespread occurrence of fibrotic diseases and scarring, effective therapies are lacking. A promising approach would be to limit the amount of collagen released from hyperactive fibroblasts. We have designed membrane permeant peptide inhibitors that specifically target the primary interface between TANGO1 and cTAGE5, an interaction that is required for collagen export from endoplasmic reticulum exit sites (ERES). Application of the peptide inhibitors leads to reduced TANGO1 and cTAGE5 protein levels and a corresponding inhibition in the secretion of several ECM components, including collagens. Peptide inhibitor treatment in zebrafish results in altered tissue architecture and reduced granulation tissue formation during cutaneous wound healing. The inhibitors reduce secretion of several ECM proteins, including collagens, fibrillin and fibronectin in human dermal fibroblasts and in cells obtained from patients with a generalized fibrotic disease (scleroderma). Taken together, targeted interference of the TANGO1-cTAGE5 binding interface could enable therapeutic modulation of ERES function in ECM hypersecretion, during wound healing and fibrotic processes.


Assuntos
Cicatriz , Colágeno , Fibroblastos , Cicatrização , Peixe-Zebra , Humanos , Animais , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Colágeno/metabolismo , Cicatrização/efeitos dos fármacos , Cicatriz/metabolismo , Cicatriz/patologia , Cicatriz/tratamento farmacológico , Pele/metabolismo , Pele/patologia , Pele/efeitos dos fármacos , Fibrose , Peptídeos/farmacologia , Peptídeos/metabolismo , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/efeitos dos fármacos , Escleroderma Sistêmico/metabolismo , Escleroderma Sistêmico/tratamento farmacológico , Escleroderma Sistêmico/patologia , Matriz Extracelular/metabolismo , Matriz Extracelular/efeitos dos fármacos
4.
Elife ; 122024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38466628

RESUMO

Secretory proteins are sorted at the trans-Golgi network (TGN) for export into specific transport carriers. However, the molecular players involved in this fundamental process remain largely elusive. Here, we identified the human transmembrane protein TGN46 as a receptor for the export of secretory cargo protein PAUF in CARTS - a class of protein kinase D-dependent TGN-to-plasma membrane carriers. We show that TGN46 is necessary for cargo sorting and loading into nascent carriers at the TGN. By combining quantitative fluorescence microscopy and mutagenesis approaches, we further discovered that the lumenal domain of TGN46 encodes for its cargo sorting function. In summary, our results define a cellular function of TGN46 in sorting secretory proteins for export from the TGN.


Assuntos
Proteínas de Membrana , Rede trans-Golgi , Humanos , Proteínas de Membrana/metabolismo , Transporte Proteico/fisiologia , Rede trans-Golgi/metabolismo
5.
bioRxiv ; 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-37131599

RESUMO

The organelles of eukaryotic cells maintain distinct protein and lipid compositions required for their specific functions. The mechanisms by which many of these components are sorted to their specific locations remain unknown. While some motifs mediating subcellular protein localization have been identified, many membrane proteins and most membrane lipids lack known sorting determinants. A putative mechanism for sorting of membrane components is based on membrane domains known as lipid rafts, which are laterally segregated nanoscopic assemblies of specific lipids and proteins. To assess the role of such domains in the secretory pathway, we applied a robust tool for synchronized secretory protein traffic (RUSH, Retention Using Selective Hooks) to protein constructs with defined affinity for raft phases. These constructs consist solely of single-pass transmembrane domains (TMDs) and, lacking other sorting determinants, constitute probes for membrane domain-mediated trafficking. We find that while raft affinity can be sufficient for steady-state PM localization, it is not sufficient for rapid exit from the endoplasmic reticulum (ER), which is instead mediated by a short cytosolic peptide motif. In contrast, we find that Golgi exit kinetics are highly dependent on raft affinity, with raft preferring probes exiting Golgi ~2.5-fold faster than probes with minimal raft affinity. We rationalize these observations with a kinetic model of secretory trafficking, wherein Golgi export can be facilitated by protein association with raft domains. These observations support a role for raft-like membrane domains in the secretory pathway and establish an experimental paradigm for dissecting its underlying machinery.

6.
PLoS Genet ; 19(9): e1010950, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37747921

RESUMO

SLC30A9 encodes a ubiquitously zinc transporter (ZnT9) and has been consistently suggested as a candidate for positive selection in humans. However, no direct adaptive molecular phenotype has been demonstrated. Our results provide evidence for directional selection operating in two major complementary haplotypes in Africa and East Asia. These haplotypes are associated with differential gene expression but also differ in the Met50Val substitution (rs1047626) in ZnT9, which we show is found in homozygosis in the Denisovan genome and displays accompanying signatures suggestive of archaic introgression. Although we found no significant differences in systemic zinc content between individuals with different rs1047626 genotypes, we demonstrate that the expression of the derived isoform (ZnT9 50Val) in HEK293 cells shows a gain of function when compared with the ancestral (ZnT9 50Met) variant. Notably, the ZnT9 50Val variant was found associated with differences in zinc handling by the mitochondria and endoplasmic reticulum, with an impact on mitochondrial metabolism. Given the essential role of the mitochondria in skeletal muscle and since the derived allele at rs1047626 is known to be associated with greater susceptibility to several neuropsychiatric traits, we propose that adaptation to cold may have driven this selection event, while also impacting predisposition to neuropsychiatric disorders in modern humans.


Assuntos
Hominidae , Animais , Humanos , Células HEK293 , Hominidae/genética , Homeostase/genética , Zinco , Genética Humana , Seleção Genética , Haplótipos , Genoma Humano
7.
Curr Opin Cell Biol ; 85: 102231, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37657367

RESUMO

Regulated secretion, an essential cellular process, relies on secretory granules (SGs) for the controlled release of a diverse range of cargo molecules, including proteins, peptides, hormones, enzymes, and neurotransmitters. SG biogenesis encompasses cargo selection, sorting, packaging, and trafficking, with the trans-Golgi Network (TGN) playing a central role. Research in the last three decades has revealed significant components required for SG biogenesis; however, no cargo receptor transferring granule cargo from the TGN to immature SGs (ISGs) has yet been identified. Consequently, recent research has devoted significant attention to studying receptor-independent cargo sorting mechanisms, shedding new light on the complexities of regulated secretion. Understanding the underlying molecular and biophysical mechanisms behind cargo sorting into ISGs holds great promise for advancing our knowledge of cellular communication and disease mechanisms.


Assuntos
Proteínas , Rede trans-Golgi , Rede trans-Golgi/metabolismo , Proteínas/metabolismo , Transporte Proteico , Transporte Biológico , Vesículas Secretórias/metabolismo
8.
J Clin Invest ; 133(14)2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37463447

RESUMO

The Rad50 interacting protein 1 (Rint1) is a key player in vesicular trafficking between the ER and Golgi apparatus. Biallelic variants in RINT1 cause infantile-onset episodic acute liver failure (ALF). Here, we describe 3 individuals from 2 unrelated families with novel biallelic RINT1 loss-of-function variants who presented with early onset spastic paraplegia, ataxia, optic nerve hypoplasia, and dysmorphic features, broadening the previously described phenotype. Our functional and lipidomic analyses provided evidence that pathogenic RINT1 variants induce defective lipid-droplet biogenesis and profound lipid abnormalities in fibroblasts and plasma that impact both neutral lipid and phospholipid metabolism, including decreased triglycerides and diglycerides, phosphatidylcholine/phosphatidylserine ratios, and inhibited Lands cycle. Further, RINT1 mutations induced intracellular ROS production and reduced ATP synthesis, affecting mitochondria with membrane depolarization, aberrant cristae ultrastructure, and increased fission. Altogether, our results highlighted the pivotal role of RINT1 in lipid metabolism and mitochondria function, with a profound effect in central nervous system development.


Assuntos
Paraplegia Espástica Hereditária , Humanos , Paraplegia Espástica Hereditária/genética , Paraplegia Espástica Hereditária/metabolismo , Metabolismo dos Lipídeos , Mutação , Complexo de Golgi/metabolismo , Lipídeos , Fenótipo , Proteínas de Ciclo Celular/metabolismo
9.
Elife ; 122023 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-36940134

RESUMO

The immunoglobulin-like lectin receptor CD169 (Siglec-1) mediates the capture of HIV-1 by activated dendritic cells (DCs) through binding to sialylated ligands. These interactions result in a more efficient virus capture as compared to resting DCs, although the underlying mechanisms are poorly understood. Using a combination of super-resolution microscopy, single-particle tracking and biochemical perturbations we studied the nanoscale organization of Siglec-1 on activated DCs and its impact on viral capture and its trafficking to a single viral-containing compartment. We found that activation of DCs leads to Siglec-1 basal nanoclustering at specific plasma membrane regions where receptor diffusion is constrained by Rho-ROCK activation and formin-dependent actin polymerization. Using liposomes with varying ganglioside concentrations, we further demonstrate that Siglec-1 nanoclustering enhances the receptor avidity to limiting concentrations of gangliosides carrying sialic ligands. Binding to either HIV-1 particles or ganglioside-bearing liposomes lead to enhanced Siglec-1 nanoclustering and global actin rearrangements characterized by a drop in RhoA activity, facilitating the final accumulation of viral particles in a single sac-like compartment. Overall, our work provides new insights on the role of the actin machinery of activated DCs in regulating the formation of basal Siglec-1 nanoclustering, being decisive for the capture and actin-dependent trafficking of HIV-1 into the virus-containing compartment.


Assuntos
Infecções por HIV , HIV-1 , Humanos , Células Dendríticas/metabolismo , Lectina 1 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo , HIV-1/fisiologia , Actinas/metabolismo , Lipossomos/metabolismo , Ligantes , Gangliosídeos/metabolismo
10.
Proc Natl Acad Sci U S A ; 119(31): e2200667119, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35881789

RESUMO

Liquid-liquid phase separation (LLPS) is emerging as a key physical principle for biological organization inside living cells, forming condensates that play important regulatory roles. Inside living nuclei, transcription factor (TF) condensates regulate transcriptional initiation and amplify the transcriptional output of expressed genes. However, the biophysical parameters controlling TF condensation are still poorly understood. Here we applied a battery of single-molecule imaging, theory, and simulations to investigate the physical properties of TF condensates of the progesterone receptor (PR) in living cells. Analysis of individual PR trajectories at different ligand concentrations showed marked signatures of a ligand-tunable LLPS process. Using a machine learning architecture, we found that receptor diffusion within condensates follows fractional Brownian motion resulting from viscoelastic interactions with chromatin. Interestingly, condensate growth dynamics at shorter times is dominated by Brownian motion coalescence (BMC), followed by a growth plateau at longer timescales that result in nanoscale condensate sizes. To rationalize these observations, we extended on the BMC model by including the stochastic unbinding of particles within condensates. Our model reproduced the BMC behavior together with finite condensate sizes at the steady state, fully recapitulating our experimental data. Overall, our results are consistent with condensate growth dynamics being regulated by the escaping probability of PR molecules from condensates. The interplay between condensation assembly and molecular escaping maintains an optimum physical condensate size. Such phenomena must have implications for the biophysical regulation of other nuclear condensates and could also operate in multiple biological scenarios.


Assuntos
Condensados Biomoleculares , Núcleo Celular , Receptores de Progesterona , Imagem Individual de Molécula , Fatores de Transcrição , Condensados Biomoleculares/química , Núcleo Celular/química , Cromatina/química , Ligantes , Aprendizado de Máquina , Movimento (Física) , Receptores de Progesterona/química , Fatores de Transcrição/química
11.
Materials (Basel) ; 15(7)2022 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-35407970

RESUMO

Biodegradable particles were developed using poly-ε-caprolactone and gelatin carriers containing different concentrations of Allium sativum essential oil (EO) (360 µg/mL, 420 µg/mL, and 460 µg/mL). Atomic force microscopy was useful to evaluate the particles' surface based on morphological parameters. The particles' size varied from 150 nm to 300 nm. The diameter was related to the increase of the particles' height as a function of the EO concentration, influencing the roughness of the surface core values (from 20 to 30 nm) and surface irregularity. The spatial parameters Str (texture aspect ratio) and Std (texture direction) revealed low spatial frequency components. The hybrid parameters Sdq (root mean square gradient) and Sdr (interfacial area ratio) also increased as a function of the EO concentration, revealing fewer flat particles. On the other hand, the functional parameters (inverse areal material ratio and peak extreme height) suggested differences in surface irregularities. Higher concentrations of EO resulted in greater microtexture asperity on the particles' surface, as well as sharper peaks. The nanoscale morphological surface analysis allowed the determination of the most appropriate concentration of encapsulated EO, influencing statistical surface parameters.

12.
Cells ; 10(7)2021 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-34203456

RESUMO

Membrane trafficking is essential for processing and transport of proteins and lipids and to establish cell compartmentation and tissue organization. Cells respond to their needs and control the quantity and quality of protein secretion accordingly. In this review, we focus on a particular membrane trafficking route from the trans-Golgi network (TGN) to the cell surface: protein kinase D (PKD)-dependent pathway for constitutive secretion mediated by carriers of the TGN to the cell surface (CARTS). Recent findings highlight the importance of lipid signaling by organelle membrane contact sites (MCSs) in this pathway. Finally, we discuss our current understanding of multiple signaling pathways for membrane trafficking regulation mediated by PKD, G protein-coupled receptors (GPCRs), growth factors, metabolites, and mechanosensors.


Assuntos
Membrana Celular/metabolismo , Proteína Quinase C/metabolismo , Vesículas Transportadoras/metabolismo , Rede trans-Golgi/metabolismo , Animais , Transporte Biológico , Humanos , Transdução de Sinais
13.
Biochim Biophys Acta Biomembr ; 1863(11): 183700, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34293283

RESUMO

TANGO1 protein facilitates the endoplasmic reticulum (ER) export of large cargoes that cannot be accommodated in 60 nm transport vesicles. It assembles into a ring in the plane of the ER membrane to create a distinct domain. Its lumenal portion collects and sorts folded cargoes while its cytoplasmic domains collar COPII coats, recruit retrograde COPI-coated membranes that fuse within the TANGO1 ring, thus opening a tunnel for cargo transfer from the ER into a growing export conduit. This mode of cargo transfer bypasses the need for vesicular intermediates and is used to export the most abundant and bulky cargoes. The evolution of TANGO1 and its activities defines the difference between yeast and animal early secretory pathways.


Assuntos
Proteínas de Transporte Vesicular/fisiologia , Animais , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Colágeno/metabolismo , Citoplasma/metabolismo , Retículo Endoplasmático/metabolismo , Humanos , Ligação Proteica , Transporte Proteico , Proteínas de Transporte Vesicular/metabolismo
14.
Arch Biochem Biophys ; 707: 108921, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34038703

RESUMO

The Golgi complex is the membrane-bound organelle that lies at the center of the secretory pathway. Its main functions are to maintain cellular lipid homeostasis, to orchestrate protein processing and maturation, and to mediate protein sorting and export. These functions are not independent of one another, and they all require that the membranes of the Golgi complex have a well-defined biochemical composition. Importantly, a finely-regulated spatiotemporal organization of the Golgi membrane components is essential for the correct performance of the organelle. In here, we review our current mechanistic and molecular understanding of how Golgi membranes are spatially organized in the lateral and axial directions to fulfill their functions. In particular, we highlight the current evidence and proposed models of intra-Golgi transport, as well as the known mechanisms for the retention of Golgi residents and for the sorting and export of transmembrane cargo proteins. Despite the controversies, conflicting evidence, clashes between models, and technical limitations, the field has moved forward and we have gained extensive knowledge in this fascinating topic. However, there are still many important questions that remain to be completely answered. We hope that this review will help boost future investigations on these issues.


Assuntos
Complexo de Golgi/metabolismo , Proteínas/metabolismo , Animais , Humanos , Transporte Proteico
15.
Curr Opin Cell Biol ; 71: 95-102, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33711785

RESUMO

Biomolecules in the secretory pathway use membrane trafficking for reaching their final intracellular destination or for secretion outside the cell. This highly dynamic and multipartite process involves different organelles that communicate to one another while maintaining their identity, shape, and function. Recent studies unraveled new mechanisms of interorganelle communication that help organize the early secretory pathway. We highlight how the spatial proximity between endoplasmic reticulum (ER) exit sites and early Golgi elements provides novel means of ER-Golgi communication for ER export. We also review recent findings on how membrane contact sites between the ER and the trans-Golgi membranes can sustain anterograde traffic out of the Golgi complex.


Assuntos
Complexo de Golgi , Via Secretória , Comunicação , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Transporte Proteico
16.
J Phys Chem Lett ; 12(4): 1175-1181, 2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33480693

RESUMO

Lateral compartmentalization of the plasma membrane is a prominent feature present at multiple spatiotemporal scales that regulates key cellular functions. The extracellular glycocalyx matrix has recently emerged as an important player that modulates the organization of specific receptors and patterns the lipid bilayer itself. However, experimental limitations in investigating its impact on the membrane nanoscale dynamics have hampered detailed studies. Here, we used photonic nanoantenna arrays combined with fluorescence correlation spectroscopy to investigate the influence of hyaluronic acid (HA), a prominent glycosaminoglycan, on the nanoscale organization of mimetic lipid bilayers. Using atomic force microscopy and force spectroscopy, we further correlated our dynamic measurements with the morphology and mechanical properties of bilayers at the nanoscale. Overall, we find that HA has a profound effect on the dynamics, nanoscale organization, and mechanical properties of lipid bilayers that are enriched in sphingolipids and/or cholesterol, such as those present in living cells.


Assuntos
Ácido Hialurônico/química , Bicamadas Lipídicas/química , Microscopia de Força Atômica , Simulação de Dinâmica Molecular , Nanotecnologia , Espectrometria de Fluorescência
17.
J Cell Biol ; 220(1)2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33156328

RESUMO

In response to cholesterol deprivation, SCAP escorts SREBP transcription factors from the endoplasmic reticulum to the Golgi complex for their proteolytic activation, leading to gene expression for cholesterol synthesis and uptake. Here, we show that in cholesterol-fed cells, ER-localized SCAP interacts through Sac1 phosphatidylinositol 4-phosphate (PI4P) phosphatase with a VAP-OSBP complex, which mediates counter-transport of ER cholesterol and Golgi PI4P at ER-Golgi membrane contact sites (MCSs). SCAP knockdown inhibited the turnover of PI4P, perhaps due to a cholesterol transport defect, and altered the subcellular distribution of the VAP-OSBP complex. As in the case of perturbation of lipid transfer complexes at ER-Golgi MCSs, SCAP knockdown inhibited the biogenesis of the trans-Golgi network-derived transport carriers CARTS, which was reversed by expression of wild-type SCAP or a Golgi transport-defective mutant, but not of cholesterol sensing-defective mutants. Altogether, our findings reveal a new role for SCAP under cholesterol-fed conditions in the facilitation of CARTS biogenesis via ER-Golgi MCSs, depending on the ER cholesterol.


Assuntos
Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Rede trans-Golgi/metabolismo , Colesterol/metabolismo , Glicosilfosfatidilinositóis/metabolismo , Células HEK293 , Células HeLa , Humanos , Modelos Biológicos , Fosfatos de Fosfatidilinositol/metabolismo , Ligação Proteica , Transporte Proteico , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo
18.
Elife ; 92020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33169667

RESUMO

The endoplasmic reticulum (ER)-resident protein TANGO1 assembles into a ring around ER exit sites (ERES), and links procollagens in the ER lumen to COPII machinery, tethers, and ER-Golgi intermediate compartment (ERGIC) in the cytoplasm (Raote et al., 2018). Here, we present a theoretical approach to investigate the physical mechanisms of TANGO1 ring assembly and how COPII polymerization, membrane tension, and force facilitate the formation of a transport intermediate for procollagen export. Our results indicate that a TANGO1 ring, by acting as a linactant, stabilizes the open neck of a nascent COPII bud. Elongation of such a bud into a transport intermediate commensurate with bulky procollagens is then facilitated by two complementary mechanisms: (i) by relieving membrane tension, possibly by TANGO1-mediated fusion of retrograde ERGIC membranes and (ii) by force application. Altogether, our theoretical approach identifies key biophysical events in TANGO1-driven procollagen export.


Assuntos
Translocador Nuclear Receptor Aril Hidrocarboneto/química , Retículo Endoplasmático/química , Complexo de Golgi/química , Modelos Químicos , Conformação Proteica , Domínios Proteicos , Proteínas de Transporte Vesicular
19.
J Cell Sci ; 133(15)2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32801132

RESUMO

The COVID-19 pandemic has disrupted traditional modes of scientific communication. In-person conferences and seminars have been cancelled and most scientists around the world have been confined to their homes. Although challenging, this situation has presented an opportunity to adopt new ways to communicate science and build scientific relationships within a digital environment, thereby reducing the environmental impact and increasing the inclusivity of scientific events. As a group of researchers who have recently created online seminar series for our respective research communities, we have come together to share our experiences and insights. Only a few weeks into this process, and often learning 'on the job', we have collectively encountered different problems and solutions. Here, we share our advice on formats and tools, security concerns, spreading the word to your community and creating a diverse, inclusive and collegial space online. We hope our experience will help others launch their own online initiatives, helping to shape the future of scientific communication as we move past the current crisis.


Assuntos
Congressos como Assunto , Infecções por Coronavirus/prevenção & controle , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , Ciência , Realidade Virtual , COVID-19 , Segurança Computacional , Humanos , Redes Sociais Online , Pesquisa
20.
Elife ; 92020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32452385

RESUMO

We have previously shown TANGO1 organises membranes at the interface of the endoplasmic reticulum (ER) and ERGIC/Golgi (Raote et al., 2018). TANGO1 corrals retrograde membranes at ER exit sites to create an export conduit. Here the retrograde membrane is, in itself, an anterograde carrier. This mode of forward transport necessitates a mechanism to prevent membrane mixing between ER and the retrograde membrane. TANGO1 has an unusual membrane helix organisation, composed of one membrane-spanning helix (TM) and another that penetrates the inner leaflet (IM). We have reconstituted these membrane helices in model membranes and shown that TM and IM together reduce the flow of lipids at a region of defined shape. We have also shown that the helices align TANGO1 around an ER exit site. We suggest this is a mechanism to prevent membrane mixing during TANGO1-mediated transfer of bulky secretory cargos from the ER to the ERGIC/Golgi via a tunnel.


Assuntos
Translocador Nuclear Receptor Aril Hidrocarboneto/metabolismo , Retículo Endoplasmático/metabolismo , Translocador Nuclear Receptor Aril Hidrocarboneto/química , Difusão , Células HeLa , Humanos , Metabolismo dos Lipídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA